ON THE RELATION OF CLIFFORD-LIPSCHITZ GROUPS TO q-SYMMETRIC GROUPS

نویسنده

  • BERTFRIED FAUSER
چکیده

It can be shown that it is possible to find a representation of Hecke algebras within Clifford algebras of multivectors. These Clifford algebras possess a unique gradation and a possibly non-symmetric bilinear form. Hecke algebra representations can be classified, for non-generic q, by Young tableaux of the symmetric group due to the isomorphy of the group algebras for q → 1. Since spinors can be constructed as elements of minimal left (right) ideals obtained by the left (right) action on primitive idempotents, we are able to construct q-spinors from q-Young operators corresponding to the appropriate symmetry type. It turns out that an anti-symmetric part in the Clifford bilinear form is necessary. q-deformed reflections (Hecke generators) can be obtained only for even multivector aggregates rendering this symmetry a composite one. In this construction one is able to deform spin groups only, though not pin groups. The method is closely related to a projective interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 08 06 2 v 1 [ m at h . Q A ] 1 3 A ug 1 99 9 Hecke Algebra Representations in Ideals Generated

It is a well known fact from the group theory that irreducible tensor representations of classical groups are suitably characterized by irreducible representations of the symmetric groups. However, due to their different nature, vector and spinor representations are only connected and not united in such description. Clifford algebras are an ideal tool with which to describe symmetries of multip...

متن کامل

Clifford Algebras and Their Representations

Introductory and historical remarks Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann algebras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean space. É. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2, that do ...

متن کامل

Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups

The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).

متن کامل

Clifford Algebras, Clifford Groups, and a Generalization of the Quaternions: The Pin and Spin Groups

One of the main goals of these notes is to explain how rotations in R are induced by the action of a certain group Spin(n) on R, in a way that generalizes the action of the unit complex numbers U(1) on R, and the action of the unit quaternions SU(2) on R (i.e., the action is defined in terms of multiplication in a larger algebra containing both the group Spin(n) and R). The group Spin(n), calle...

متن کامل

Vertex Representations via Finite Groups and the Mckay Correspondence

where the first factor is a symmetric algebra and the second one is a group algebra. The affine algebra ĝ contains a Heisenberg algebra ĥ. One can define the so-called vertex operators X(α, z) associated to α ∈ Q acting on V essentially using the Heisenberg algebra ĥ. The representation of ĝ on V is then obtained from the action of the Heisenberg algebra ĥ and the vertex operators X(α, z) assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998